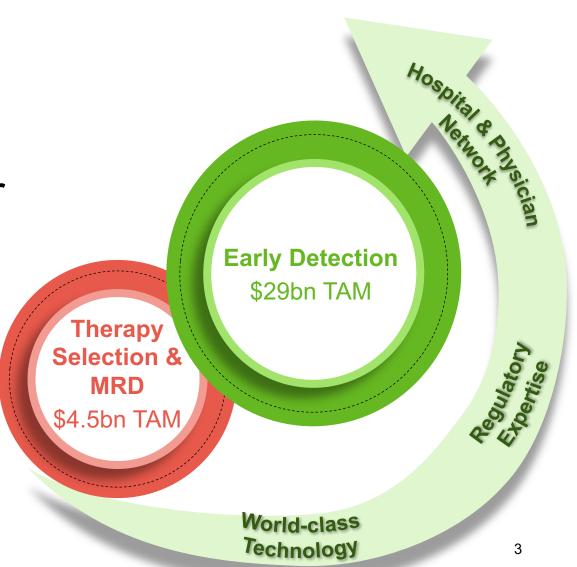


Burning Rock Biotech Limited

BNR US Equity MSCI China index constituent since May 2021

Disclaimer

This presentation has been prepared by Burning Rock Biotech Limited (the "Company") solely for information purpose and has not been independently verified. No representations, warranties or undertakings, express or implied, are made by the Company or any of its affiliates, advisers, or representatives as to, and no reliance should be placed upon, the accuracy, fairness, completeness or correctness of the information or opinions presented or contained in this presentation. None of the Company or any of its affiliates, advisers or representatives accept any responsibility whatsoever (in negligence or otherwise) for any loss howsoever arising from any information presented or contained in this presentation or otherwise arising in connection with the presentation. The information presented or contained in this presentation is subject to change without notice and its accuracy is not guaranteed.


Certain statements in this presentation, and other statements that the Company may make, are forward-looking statements within the meaning of Section 21E of the Securities Exchange Act of 1934, as amended. These statements reflect the Company's intent, beliefs or current expectations about the future. These statements can be recognized by the use of words such as "expects," "plans," "will," "estimates," "projects," "intends," "anticipates," "believes," "confident" or words of similar meaning. These forward-looking statements are not guarantees of future performance and are based on a number of assumptions about the Company's operations and other factors, many of which are beyond the Company's control, and accordingly, actual results may differ materially from these forward-looking statements. The Company or any of its affiliates, advisers or representatives has no obligation and does not undertake to revise forward-looking statements to reflect future events or circumstances.

This presentation does not constitute an offer to sell or issue or an invitation to purchase or subscribe for any securities of the Company for sale in the United States or anywhere else. No part of this presentation shall form the basis of or be relied upon in connection with any contract or commitment whatsoever.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS HIGHLY CONFIDENTIAL AND IS BEING GIVEN SOLELY FOR YOUR INFORMATION AND ONLY FOR YOUR USE IN CONNECTION WITH THIS PRESENTATION. THE INFORMATION CONTAINED HEREIN MAY NOT BE COPIED, REPRODUCED, REDISTRIBUTED, OR OTHERWISE DISCLOSED, IN WHOLE OR IN PART, TO ANY OTHER PERSON IN ANY MANNER. ANY FORWARDING, DISTRIBUTION OR REPRODUCTION OF THIS PRESENTATION IN WHOLE OR IN PART IS UNAUTHORIZED.

By viewing, accessing or participating in this presentation, participants hereby acknowledge and agree to keep the contents of this presentation and these materials confidential. Participants agree not to remove these materials, or any materials provided in connection herewith, from the conference room where such documents are provided. Participants agree further not to photograph, copy or otherwise reproduce this presentation in any form or pass on this presentation to any other person for any purpose, during the presentation or while in the conference room. Participants must return this presentation and all other materials provided in connection herewith to the Company upon completion of the presentation. By viewing, accessing or participating in this presentation, participants agree to be bound by the foregoing limitations. Any failure to comply with these restrictions may constitute a violation of applicable securities laws.

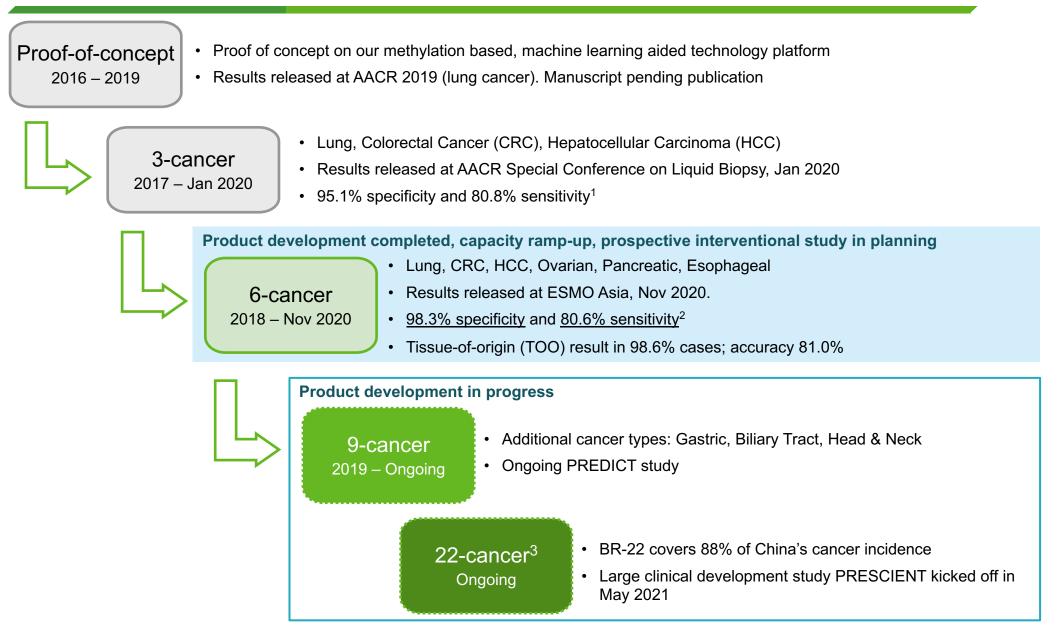
China's molecular diagnostics leader for precision oncology

Early Detection

- PRESCIENT study launched for the development of our multi-omics 22-cancer test
- Ongoing progress with PREDICT study, for the development of our 9-cancer test
- Ongoing preparation work for commercialization of our 6-cancer test

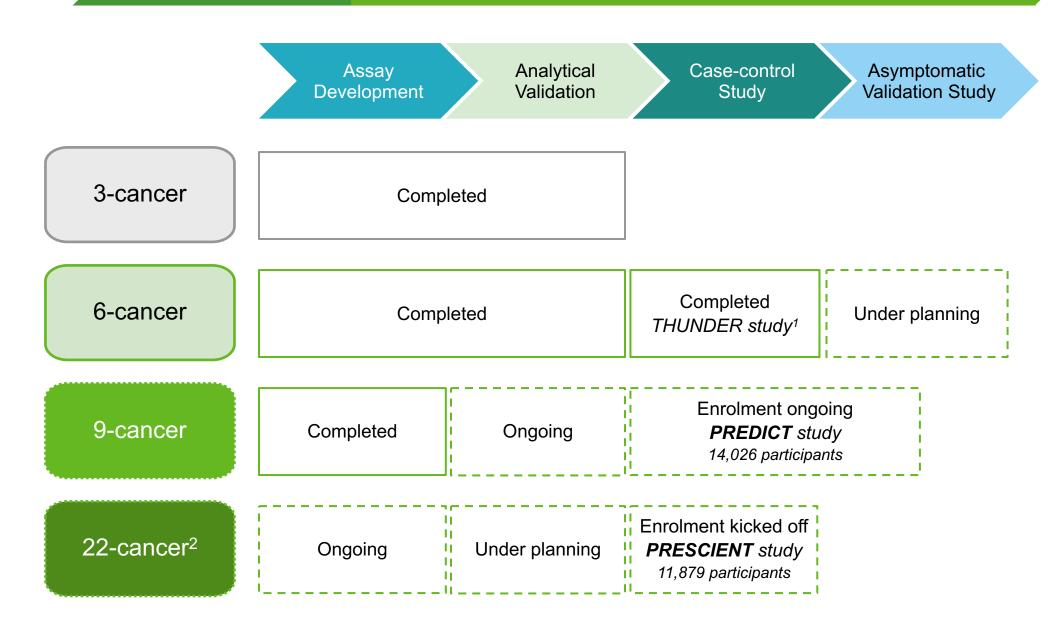
Therapy Selection

• Full results of the SEQC2 study published. Liquid biopsy section published on Nature Biotechnology



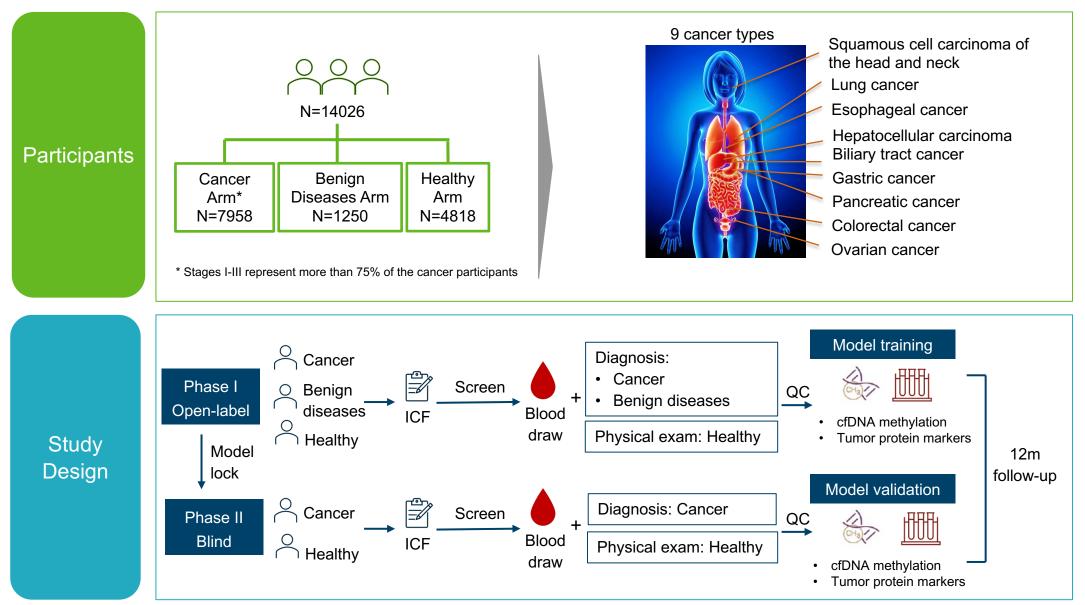
Product development roadmap

Multi-year effort, high entry barriers



Notes:

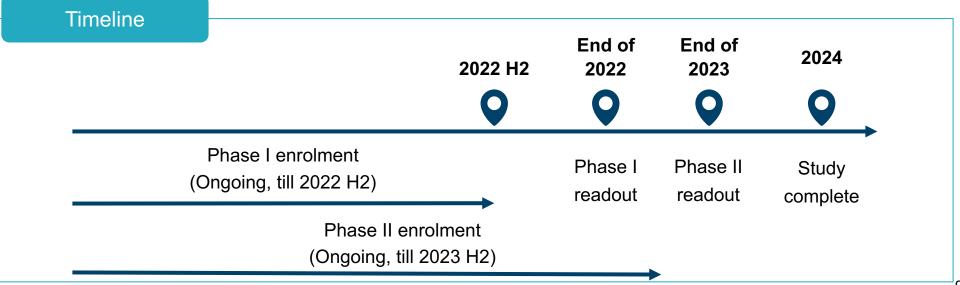
¹ Training and validation cohorts combined, 490 cancer samples, 226 control samples. Sample size is aggregated through a series of case-control studies. 95.1% specificity (95% Cl 91.2-97.4) and 80.8% sensitivity (95% Cl 77.0-84.1) ² Validation cohort, 351 cancer samples, 288 control samples. Sample size is aggregated through a series of case-control studies. 98.3% specificity (95% Cl 95.8-99.4) and 80.6% sensitivity (95% Cl 76.0-84.6). Further details in Appendix. ³ Final number of cancer types subject to development progress


Clinical programs

Large-cohort, high-quality clinical execution: key to product development and model training

The PREDICT study (NCT04817306) Study design

PREDICT is a *prospective, multi-center, case-control, observational* study for the detection of 9 cancer types through a cell-free DNA (cfDNA) methylation based, machine learning aided model

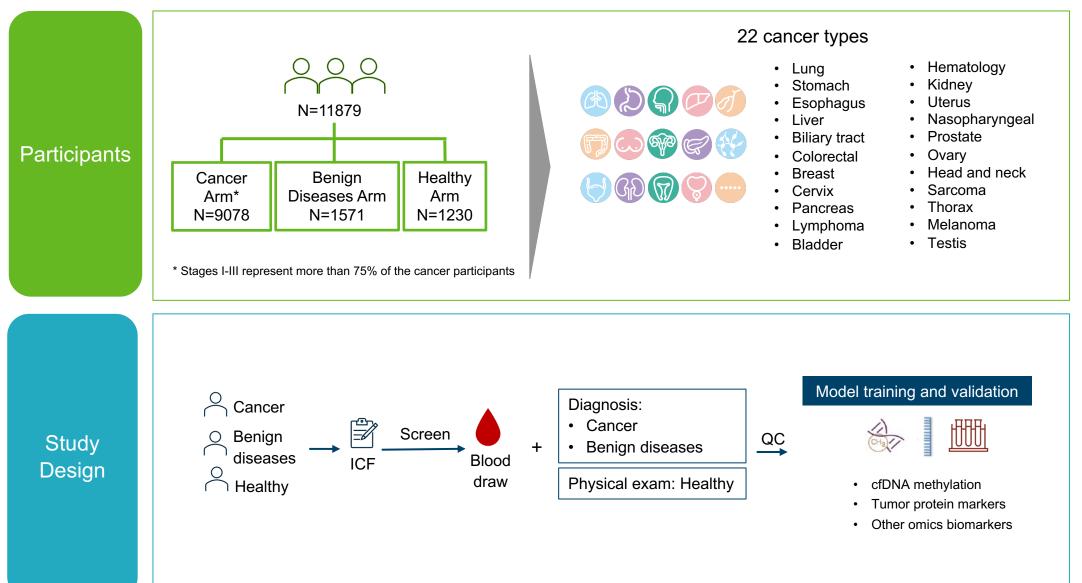


The PREDICT study (NCT04817306) Objectives and timeline

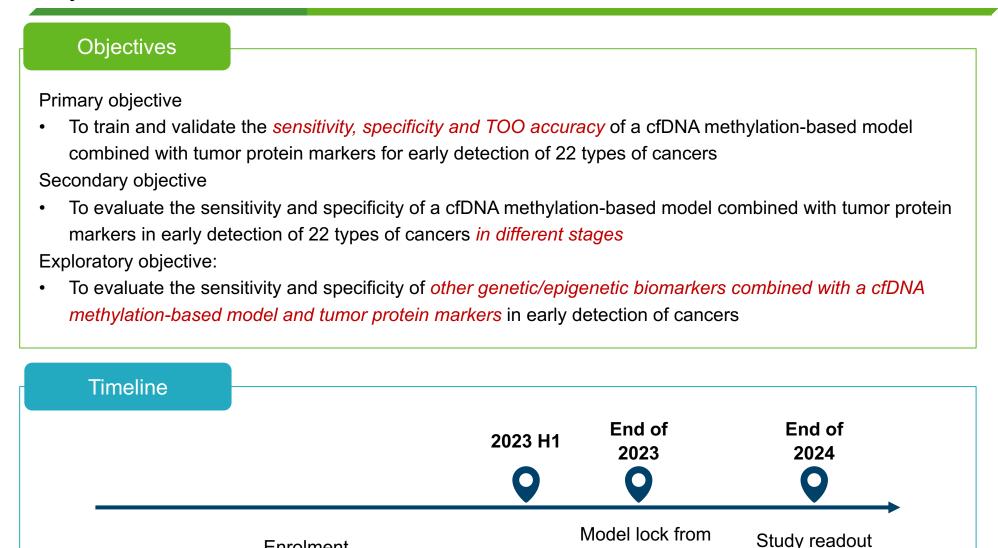
Objectives

Primary objective:

- To train and validate the *sensitivity, specificity and TOO accuracy* of a cfDNA methylation-based model for early detection of 9 types of cancers
- Key secondary objectives:
- To evaluate the sensitivity, specificity and TOO accuracy of a cfDNA methylation-based model in various types and stages of cancers
- To evaluate the sensitivity, specificity and TOO accuracy of a cfDNA methylation-based model *combined with other biomarkers*
- To evaluate the *positive predictive value* of a cfDNA methylation-based model among asymptomatic "cancerfree" individuals within a 12-month follow up period



The PREDICT study (NCT04817306)



The PRESCIENT study (NCT04822792) Study design

PRESCIENT is a *prospective, multi-center, case-control, observational* study aimed to train and validate the performance of a multi-omics model in the detection of 22 cancers

The PRESCIENT study (NCT04822792) Objectives and timeline

training set

Enrolment (Ongoing, till 2023 H1)

Leadership from top-tier principal investigators key to clinical success

PREDICT

- Leading site: Shanghai Zhongshan Hospital
 - One of the China's largest comprehensive academic hospitals
 - Performs c.104,000 operations and serves c.169,000 inpatients and over 4,236,000 outpatients on an annual basis¹
 - Ranked top 5 in the 2019 China's general hospital rankings²
- Other sites include but not limited to
 - Ruijin Hospital
 - Shanghai Jiaotong University School of Medicine
 - Fudan University Shanghai Cancer Center

- · Fellow of the Chinese Academy of Sciences
- President of Shanghai Zhongshan Hospital

PRESCIENT

- Leading site: Cancer Hospital of the Chinese Academy of Medical Sciences
 - The first and top cancer-specialist hospital in China
 - The National Clinical Center for Cancer Research, the National Center for Quality Control on Standardized Cancer Treatment and Diagnosis, the National Clinical Center for Drug Research
- Other sites include but not limited to
 - Beijing Cancer Hospital
 - Jilin Cancer Hospital
 - Hubei General Hospital

Principal Investigators

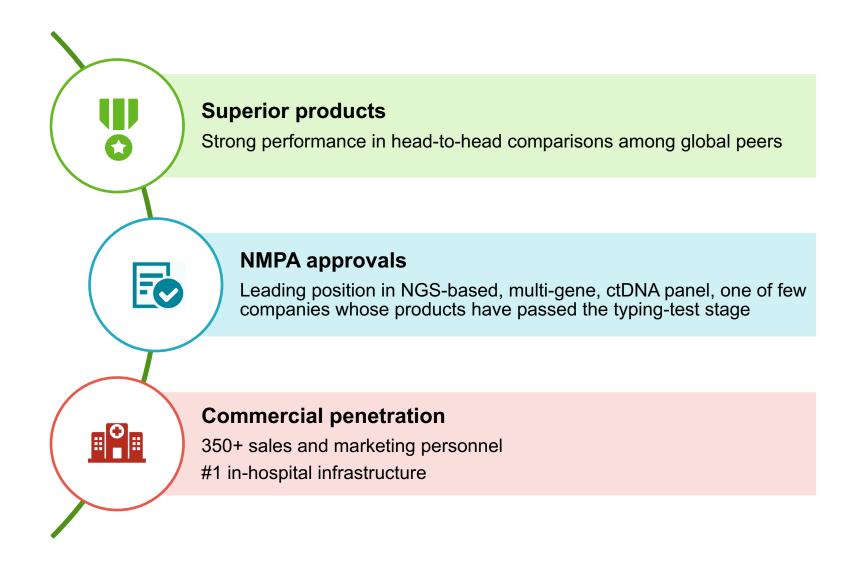
Prof. Jie He

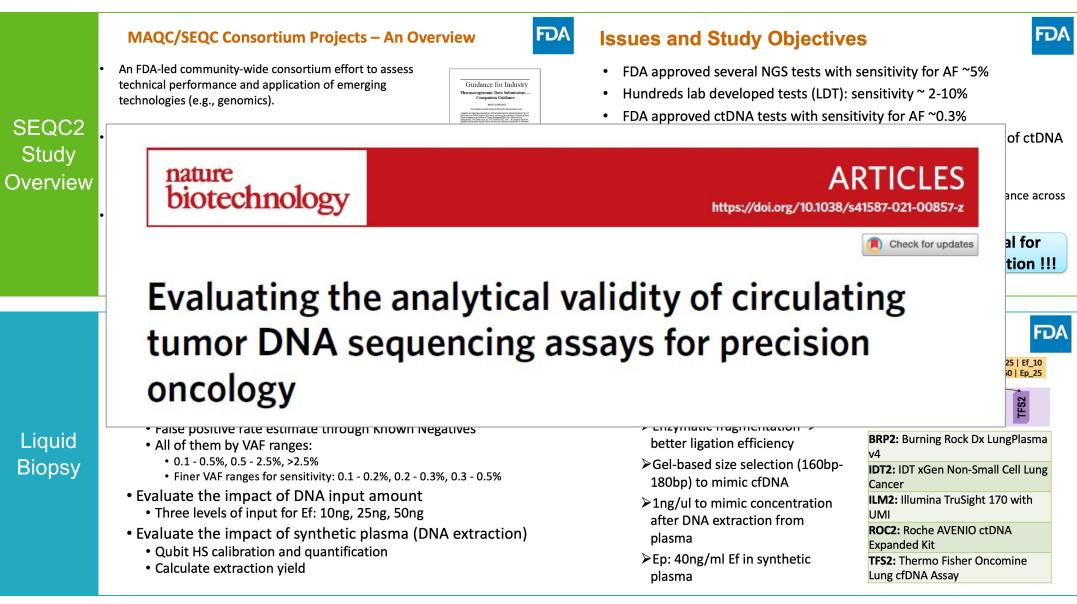
Prof. Jie Wang

Head of the Dept. of Medicine, CHCAMS

• Fellow of the Chinese Academy of Sciences

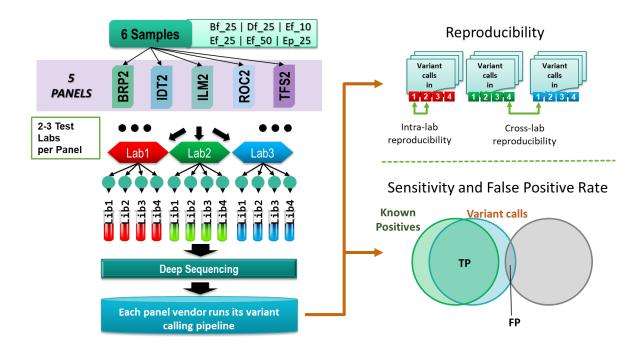
President of CHCAMS





Factors for long-term success

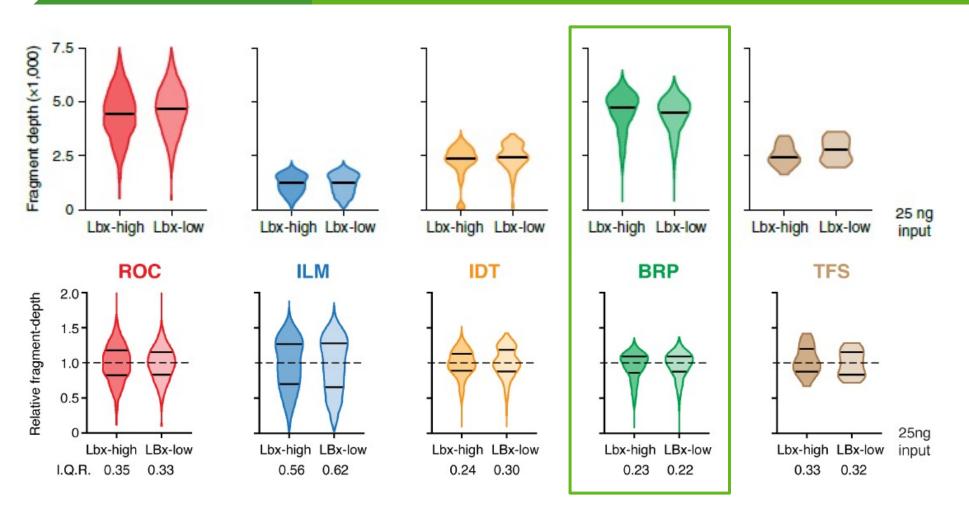
Strong product performance as the core. NMPA approvals enable competitive differentiation



FDA-led SEQC2 study overview

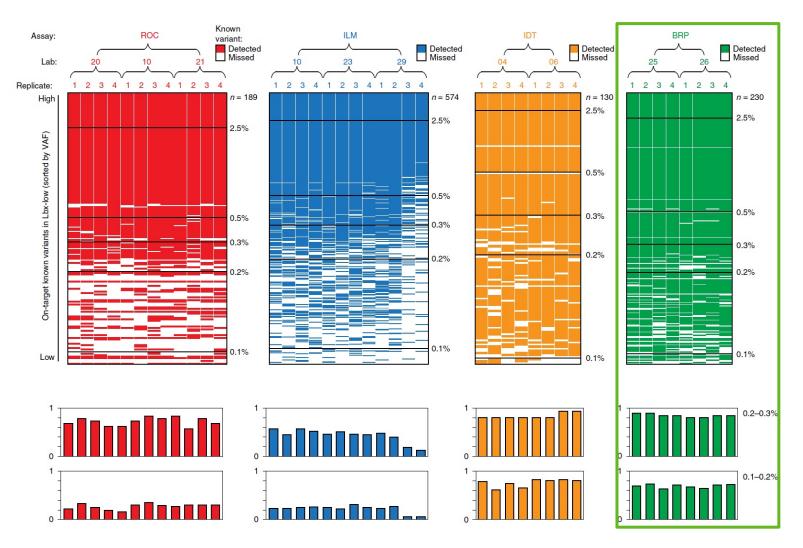
Source:

				Sequencing	Target	Reportable	Coding		Negatives	
ľ	Name	Vendor	ctDNA assay	platform	genes	region (kb)	(kb)	CTR (kb)	(× 1,000)	Variants
1	ROC	Roche Sequencing Solutions	AVENIO ctDNA (Expanded Kit)	Illumina NextSeq	77	161.7	140.2	103.8	47.1	189
1	LM	Illumina	TruSight Tumor 170 + UMI	Illumina NovaSeq	154	501.0	390.1	338.4	133.0	574
1	DT	Integrated DNA Technologies	xGen Non-small Cell Lung Cancer	Illumina NovaSeq	24	110.1	93.2	76.5	39.3	130
E	BRP	Burning Rock Biotech	Lung Plasma v4	Illumina NovaSeq	168	226.9	148.5	125.1	53.4	229
27	TFS	i nermo Fisner Scientific	Oncomine Lung cfDNA assay	Ion Torrent S5 XL	11	1.9	1.6	1.3	0.8	5



Source:

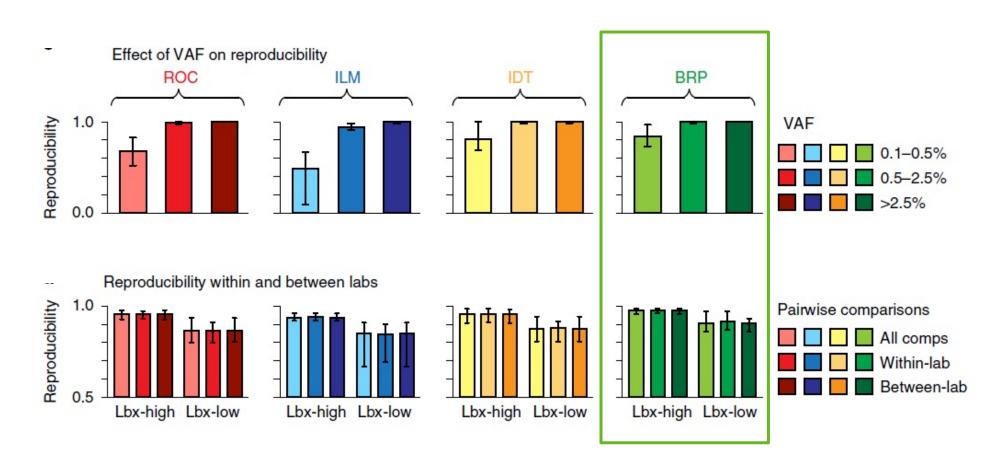
"Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology", Nature Biotechnology, Apr 2021


Performance - Molecular recovery capability and coverage uniformity

"We evaluated coverage depth, which is considered a key variable in ctDNA sequencing. We observed substantial differences in coverage among different assays, with median unique fragment depth ranging from ~4,700-fold (BRP and ROC) to ~1,200-fold (ILM) at 25ng input (Fig. 3c). Given that DNA input quantities were standardized, these differences reflect the capacity of each assay to exhaustively profile the unique DNA fragments within the input sample and might have a relevant effect on assay performance."

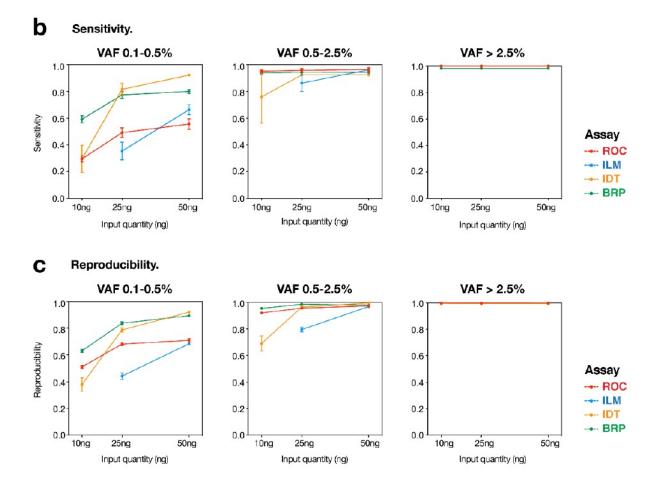
Performance - Sensitivity

LBx-low (25 ng input) replicates in each participating assay in different expected VAF bin.


"The most sensitive assays (IDT and BRP) achieved sensitivity greater than 0.90 for variants with 0.3–0.5% VAF; however, no assays reached this mark for variants with 0.2–0.3% or 0.1– 0.2% VAF (Fig. 4a)."

"The performance characteristics of the assays evaluated here were broadly similar to what has been reported by several ctDNA sequencing providers (based on internal testing) that did not participate in this study. During validation of the Guardant360 CDx hybrid capture assay, variants were detected with high sensitivity (~94%) at VAF \geq 0.4%, declining to ~64% among variants with VAF ranging from 0.05% to 0.25%." FoundationACT showed ~99% sensitivity for SNVs with VAF > 0.5%, ~95% for 0.25%-0.5% VAF and ~70% for 0.125-0.25% VAF."

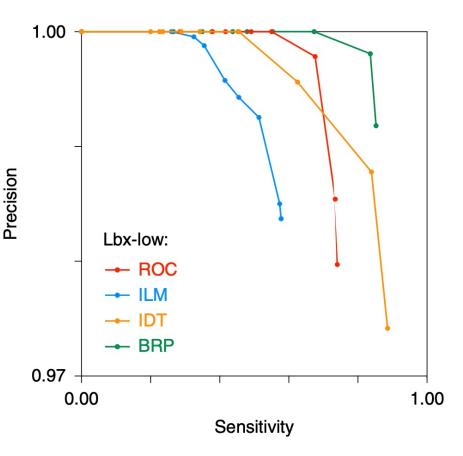
Source: "Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology", Nature Biotechnology, Apr 2021



Performance - Reproducibility

- The reproducibility reduced in lower VAF bin (0.1-0.5%)
- Cross-lab and Within-Lab reproducibility performance is mainly driven by VAF

Performance – Robustness for low-input cfDNA samples


"The increasing fragment-depth afforded by 25 ng input, compared to 10 ng, resulted in substantial improvements in sensitivity, reproducibility and overall diagnostic performance for all assays, particularly for low-frequency variants (Fig. 5b-e; Fig. S5a,b). However, some assays (BRP, ROC) showed minimal further improvement with the addition of 50 ng input (Fig. 5b-e; Fig. S5a,b). The extent to which performance varied over the range of input quantities tested indicates the robustness of each assay to the variable cell-free DNA input amounts encountered in the clinic. Overall, the greater fragment-depth achieved by an assay at a given input level, the more robust that assay was to variation in input quantity, with BRP being the most stable (Fig. 5b-e)."

FP-rate (FP / kb) at specified

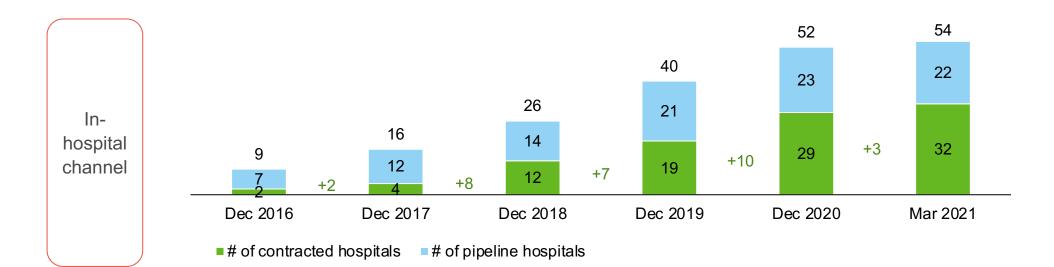
Overall analytical accuracy and specificity

Analytical accuracy

				(,,	
	Known negatives	FPs per replicate	VAF thre	eshold	
Assay	(kb)	(mean [range])	>0%	> 0.1%	> 0.5%
ROC	47.1	2.91 [1-6]	0.061	0.044	0.000
ILM	133	5.25 [2-10]	0.039	0.039	0.008
IDT	39.3	2.75 [0-6]	0.070	0.057	0.000
BRP	53.4	1.65 [0-5]	0.030	0.007	0.000

The analytical accuracy was measured by **Precision-Sensitivity** plot (25ng LBx-Low) The false positive rates were computed by FP/kb region. Once different VAF threshold increases, FP rates dropped further.

"To compare the accuracy of the participating ctDNA assays, we generated precision recall curves, ranking known variants and FPs according to their observed VAFs. For Lbx-low samples at 25ng input, BRP was the most accurate assay, with roughly equivalent sensitivity but superior precision to IDT (Fig. 4b and Supplementary Fig. 4c). "

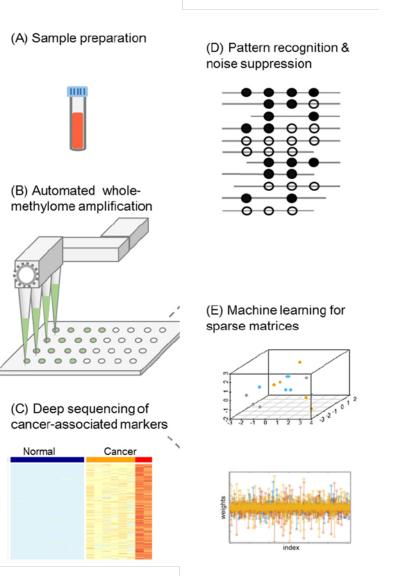


Operating metrics

		2018	2019	2020	1Q19	1Q20	2Q20	3Q20	4Q20	1Q21
	# of ordering hospitals	263	335	312	249	232	284	289	294	303
Central-	# of ordering physicians	1,135	1,632	1,318	984	810	1,175	1,194	1,114	1,082
lab channel	# of patients tested ¹	15,821	23,075	25,262	5,336	4,680	7,252	8,644	7,989	7,716
ondimor	ΥοΥ	67%	46%	9%		-12%	20%	28%	5%	65%
	QoQ						55%	19%	-8%	-3%

Financials

RMB millions	2019	2020	18 ҮоҮ	19 YoY	20 YoY	1Q20	2Q20	3Q20	4Q20	1Q21	1Q21 YoY	1Q21 QoQ	2021 Guide
Revenue	381.7	429.9	88%	83%	13%	67.3	107.0	123.9	131.7	106.6	58%	(19%)	610
Central lab	276.3	297.3	83%	71%	8%	46.1	74.6	89.9	86.7	74.6	62%	(14%)	
In-hospital	87.7	117.9	209%	164%	34%	17.1	27.6	31.7	41.5	29.0	70%	(30%)	
Pharma	17.7	14.7	15%	25%	(17%)	4.1	4.8	2.3	3.6	3.1	(25%)	(15%)	
Gross profit	273.3	313.9	88%	102%	15%	44.8	78.4	91.6	99.2	76.9	72%	(22%)	
Total opex	442.4	726.3	54%	49%	64%	104.1	151.4	216.2	254.6	248.8	139%	(2%)	
R&D ¹	147.5	214.1	114%	43%	45%	37.9	45.9	58.7	71.6	55.0	45%	(23%)	
S&M ¹	152.0	165.1	52%	49%	9%	29.6	37.5	43.9	54.2	52.5	77%	(3%)	
G&A ¹	120.8	174.6	18%	40%	44%	32.6	40.6	44.9	56.5	56.9	75%	(1%)	
SBC ²	22.1	172.5				4.0	27.4	68.7	72.3	84.4			
Operating profit	(169.1)	(412.4)				(59.3)	(73.0)	(124.6)	(155.4)	(171.9)			
GP margin	71.6%	73.0%				66.5%	73.3%	73.9%	75.3%	72.2%			
Opex / revenue	116%	169%				155%	142%	175%	193%	233%			
S&M / revenue	40%	39%				44%	36%	36%	43%	52%			



Appendix 1

Early detection

Burning Rock early detection technology - ELSA-seq

R&D started in 2016; combination of targeted deep methylation sequencing and machine learning

Technology Highlights:

- ✓ Single-stranded library prep starts as low as 1ng cfDNA
- ✓ Bisulfite conversion or enzymatic conversion compatible
- Intelligent probe design to maintain the methylation level fidelity
- Multiple noise reduction and signal corrections before machine-learning model building

ESMO Asia mini-oral presentation, Nov 2020 Overview of training and validation sets

Training	Control	Cancer	LC	CRC	LIHC	OVCA	PAAD	ESCA
total	195	274	50	46	48	50	40	40
age, mean+/-SD	53+/-6	57+/-8	60+/-6	60+/-8	55+/-8	50+/-8	59+/-7	57+/-6
age, min/max	40/72	40/75	47/74	44/75	43/72	40/73	42/71	45/70
sex, female, n (%)	128 (70)	110 (40)	16 (32)	21 (46)	4 (8)	50 (100)	14 (35)	5 (13)
clinical stage, n (%)								
I		73 (27)	20 (40)	9 (20)	20 (41)	5 (10)	11 (27)	8 (20)
II		63 (23)	14 (28)	12 (26)	8 (17)	5 (10)	11 (27)	13 (33)
III		97 (35)	7 (14)	15 (32)	14 (29)	37 (74)	9 (23)	15 (37)
IV		41 (15)	9 (18)	10 (22)	6 (13)	3 (6)	9 (23)	4 (10)
Validation	Control	Cancer	LC	CRC	LIHC	OVCA	PAAD	ESCA
total	288	351	61	57	57	53	59	64
age, mean+/-SD	54+/-6	59+/-8	62+/-7	61+/-9	54+/-8	54+/-7	61+/-9	62+/-6
age, min/max	40/74	40/75	45/74	44/75	40/73	42/68	40/74	46/74
sex, female, n (%)	171 (59)	146 (42)	22 (36)	21 (37)	9 (16)	53 (100)	19 (32)	22 (34)

1.	Similar age distribution between case	es and controls. and betw	een training set and validation set

15 (26)

13 (23)

14 (25)

15 (26)

15 (26)

14 (25)

15 (26)

13 (23)

6 (11)

11 (21)

22 (42)

14 (26)

18 (30)

14 (24)

13 (22)

14 (24)

2. Balanced sample size among different stages and cancer types

83 (23)

87 (25)

94 (27)

87 (25)

clinical stage, n (%)

|| |||

IV

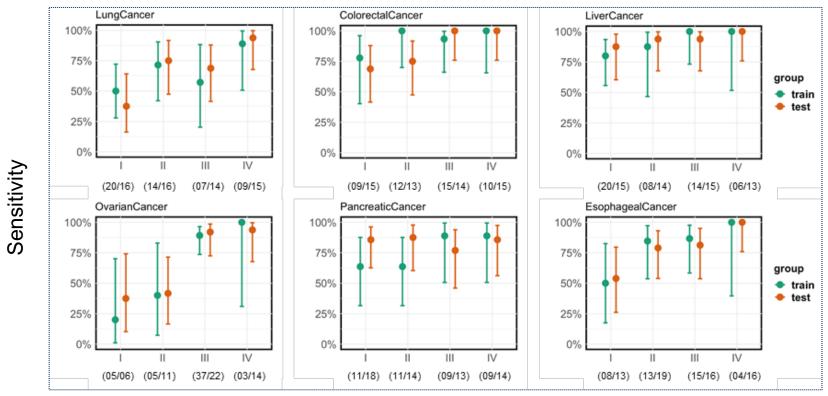
16 (26)

16 (26)

14 (23)

15 (25)

13 (20)


19 (30)

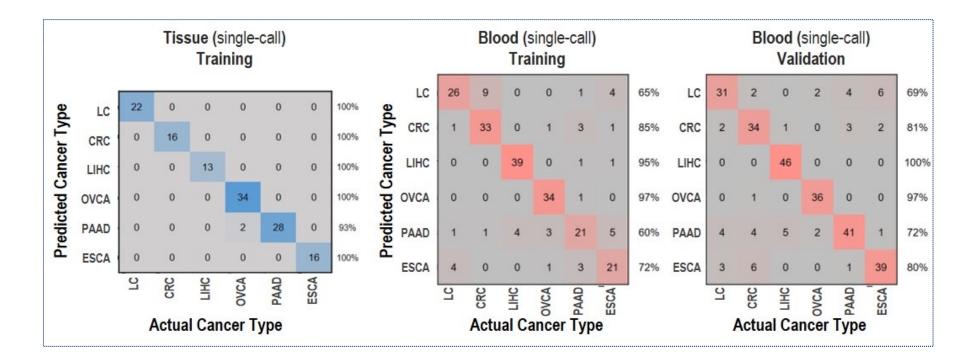
16 (25)

16 (25)

ESMO Asia mini-oral presentation, Nov 2020

Our test detects cancers at an early stage with high specificity and high sensitivity

Clinical Stages (# in Training / # in Validation)


- The specificity was **99.5%** (95%CI: 96.7-100%; training) and **98.3%** (95%CI: 95.8-99.4%; validation)
- The sensitivity was 79.9% (95%CI: 74.6-84.4%; training) and 80.6% (95%CI: 76.0-84.4%; validation)

ESMO Asia mini-oral presentation, Nov 2020

Our test detects cancers at an early stage with high specificity and high sensitivity

ESMO Asia mini-oral presentation, Nov 2020 Our test predicts the tissue of origin with high accuracy

- The classifier was able to distinguish different cancer tissue samples with exceptional accuracy (129/131).
- **98.6%** of detected cancer blood samples were assigned an organ-source in both training and validation sets:
 - For single organ calls, the predictive accuracy was **79%** (training) and **82%** (validation);
 - For top-two organ calls, the predictive accuracy was **89%** (training) and **87%** (validation).

ESMO Asia mini-oral presentation, Nov 2020 6-cancer test sensitivity by cancer type and stage


Cancer	Group	I.	II	Ш	IV	Overall
Lung	Train	10/20 (50.0)	10/14 (71.4)	4/7 (57.1)	8/9 (88.9)	32/50 (64.0)
Lung	Test	6/16 (37.5)	12/16 (75.0)	9/14 (64.3)	14/15 (93.3)	41/61 (67.2)
Colorectal	Train	7/9 (77.8)	12/12 (100.0)	14/15 (93.3)	10/10 (100.0)	43/46 (93.5)
Colorectai	Test	10/15 (66.7)	10/13 (76.9)	14/14 (100.0)	15/15 (100.0)	49/57 (86.0)
Liver	Train	16/20 (80.0)	7/8 (87.5)	14/14 (100.0)	6/6 (100.0)	43/48 (89.6)
Liver	Test	13/15 (86.7)	13/14 (92.9)	14/15 (93.3)	13/13 (100.0)	53/57 (93.0)
Ovarian	Train	1/5 (20.0)	2/5 (40.0)	33/37 (89.2)	3/3 (100.0)	39/50 (78.0)
Ovariali	Test	2/6 (33.3)	5/11 (45.5)	20/22 (90.9)	13/14 (92.9)	40/53 (75.5)
Pancreatic	Train	7/11 (63.6)	7/11 (63.6)	8/9 (88.9)	8/9 (88.9)	30/40 (75.0)
Pancreatic	Test	15/18 (83.3)	12/14 (85.7)	10/13 (76.9)	12/14 (85.7)	49/59 (83.1)
Esophageal	Train	4/8 (50.0)	11/13 (84.6)	13/15 (86.7)	4/4 (100.0)	32/40 (80.0)
Loophayear	Test	7/13 (53.8)	15/19 (78.9)	13/16 (81.3)	16/16 (100.0)	51/64 (79.7)

Sensitivity and Specificity - Correct#/Total# (%)

Sonoitivity	Train			219/274 (79.9)
Sensitivity	Test			283/351 (80.6)
Specificity	Train			194/195 (99.5)
Specificity	Test			283/288 (98.3)

	Product development	Intended-use validation	Commercial roll-out
BR 6-cancer test	 Training and case- controlled validation (completed) Capacity ramp-up ongoing 	 Early access in progress Prospective validation 	 Revenue generation targeted for 2022, subject to early-access feedback
BR	1 Best multi-cancer product in China	2 Strong validation dataset	3 First mover advantage
competitive advantages	Through highly-sensitive methylation assay and large training dataset	Through research collaboration with leading physicians and real-world data	Increasing volume / data enables improved product performance and unit cost reduction

Multi vs. single cancer early detection Multiple times larger TAM

BR-22 covers 88% of China's cancer incidence²

Notes:

¹ Incidence data per "2018 China cancer registry annual report ", J He et al., ISBN 978-7-117-28585-8

² Final number of cancer types subject to development progress

Multi vs. single cancer early detection in China Significantly higher technology barrier

Single-cancer test	 Established technology, typically PCR based, with readily available products US – First FDA approved product in 2014 (first submission in 2012) China – NMPA approved products (class-III, including tissue and blood-based) in 2017, 2018, 2019, 2020, 2021, etc Small panel, low cost Relatively simple genomic data analytics
Multi-cancer test	 Biologically, blood-based tests are multi-cancer in nature Highly complex technology with product risk Globally, only a small number of innovators have locked-down products going under intended-use validation Data as a key factor for development and validation Evolving dataset leads to continuous product improvement and greater validation Unprecedented commercial potential Possibility to fundamentally shift oncology landscape from late-stage therapeutics to earlier stage intervention